
Permission to make digital or hard copies of part or all of this work for personal or classroom use is 
granted without fee provided that copies are not made or distributed for commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this 
work must be honored. For all other uses, contact the Owner/Author. 
SIGGRAPH 2013, July 21 – 25, 2013, Anaheim, California. 
2013 Copyright held by the Owner/Author. 
ACM 978-1-4503-2261-4/13/07 

Lighting technology of ”The Last Of Us”

Michal Iwanicki∗

Naughty Dog, Inc.

1 Introduction

”The Last Of Us” is an upcoming action-adventure, survival-horror
game from Naughty Dog for the Playstation 3 console. Since light-
ing plays an important role in the game, we decided to use pre-
computed lightmaps to deliver the highest possible quality lighting
at interactive framerates. Even though they are commonly used,
lightmaps still suffer from some distracting artifacts - like lighting
discontinuities resulting from uv layout, lack of specular highlights
and absence of shadows from dynamic objects. We utilize a sim-
ple, directional representation of incoming lighting to solve these
problems. The methods are simple and effective in terms of both
production time and real-time performance and produce a result of
quality unseen in games before.

2 Directional lightmaps

Our preprocessing pipeline starts by generating spherical harmonics
(SH) lightmaps [Good and Taylor 2005]. From this representation a
dominant light direction is extracted as described by [Sloan 2008].
Since this direction tends to change rapidly on shadow boundaries,
we apply a low-pass spatial filter to this data, which eliminates some
artifacts in later stages. In the next step we use the extracted direc-
tion, together with original SH lightmap, to convert incoming light-
ing into a pair of lights, one ambient and one directional, such that
the error in the reconstruction is minimized in a least-squares sense.
This simplified representation is used at runtime. Unlike traditional
lightmaps, which only store the diffuse response of the underlying
material, ours allow us to utilize normal mapping to show local sur-
face details as well as to provide view-dependent highlights from
the directional portion of the extracted lighting.

3 Seam stitching

Lightmaps created this way provide directional information about
the incoming light, light, however they can suffer from discontinu-
ity artifacts, similar to traditional lightmaps. Since lightmaps re-
quire unique uv mapping, it may happen that the mesh needs to be
split into parts that are disjoint in uv space. This can cause visible
lighting discontinuities at runtime.

We solve this by ”seam stitching”, which we execute in a prepro-
cessing stage. For each edge that is split in uv space, we create a
number of stitching points placed evenly along it. For each one of
them we compute an error value as a difference between the light-
ing values sampled from the lightmap on both sides of the split
edge. We assemble the equations describing error for all the stitch-
ing points into a single system, together with a set of equations
that ensure that corrected lighting values stay in proximity of the
originally calculated ones. User-provided scaling factor controls
the ratio between stitching strength and preservation of the orig-
nal values. The entire system is minimized in the least square sense
and lighting values stored in the lightmap are updated appropriately.
The method can be used with existing parametrizations and doesn’t
incur any additional cost at runtime.

∗e-mail:michal iwanicki@naughtydog.com

Figure 1: Character casting soft shadow onto a lightmapped envi-
ronment.

4 Soft shadows

Lightmaps contain information about the lighting reflected only
from the static parts of the scene and any dynamic objects intro-
duced at runtime don’t affect them. Since recomputing the full
lighting solution is too costly to be performed every frame, we use
the directional information in the lightmap to simulate occlusion at
runtime. We approximate the occluder’s shape with a set of spheres.
The occlusion of ambient component is computed analytically, as
the percentage of the hemisphere occluded by a sphere. For the di-
rectional component we check for the intersection of a cone origi-
nating in each visible world position and the occluding sphere. This
can be efficiently done at runtime by rendering the dominant light
direction to an off-screen buffer and processing it in a deferred fash-
ion. The cone angle is set by the artist and controls the size of the
penumbra. To reduce the amount of computations required, we also
limit the influence of each occluder to a certain distance. Occlusion
from individual occluders is accumulated, and while in theory this
may result in double occlusion, it is not visible in practice.

For rigid objects that would require too many spheres to approxi-
mate, we precompute the occlusion in the space around them using
Monte Carlo methods. The occlusion function is approximated with
a single cone representing the occluded direction and stored in a 3d
texture. For those objects we compute the intersection of the pre-
computed occlusion direction and the cone oriented along dominant
light direction.

Shadows created that way don’t suffer from the artifacts common
to the screen-space methods. They have a soft and natural look that
hasn’t been shown in games before.

References

GOOD, O., AND TAYLOR, Z. 2005. Optimized photon tracing
using spherical harmonic light maps. In ACM SIGGRAPH 2005
Sketches, ACM, New York, NY, USA, SIGGRAPH ’05.

SLOAN, P.-P. 2008. Stupid spherical harmonics (sh) tricks. In
Game Developers Conference.


